2022-03-03 09:41:32 公務(wù)員考試網(wǎng) 文章來源:廈門分院
我們今天講的工程問題就是其中一種。工程問題,大致有四種:一般基礎(chǔ)工程問題,給定時(shí)間型,效率制約型,復(fù)雜綜合型。今天,我們將以兩道例題,來簡單講解一下給定時(shí)間型題目的解法。
【例1】有一項(xiàng)工作,甲單獨(dú)干需要10小時(shí)能完成,乙單獨(dú)干需要12小時(shí)能完成。甲乙兩人同時(shí)工作5小時(shí)后,甲另有其他的事情去做,只有乙繼續(xù)工作,那么完成這項(xiàng)工作共用了()小時(shí)。
A.5B.7
C.6D.8
【答案】C。
【華圖解析】本題考查工程問題,屬于給定時(shí)間型。題目分別給了甲,乙單獨(dú)完成這項(xiàng)工作的時(shí)間10小時(shí),12小時(shí)。所以,賦值工作總量為60(10和12的最小公倍數(shù)),可以得到甲的效率為6,乙的效率為5。設(shè)完成這項(xiàng)工作的時(shí)間為x小時(shí),可列方程(6+5)×5+5×(x-5)=60,解得x=6。因此,選擇C選項(xiàng)。
【例2】工廠有5條效率不同的生產(chǎn)線。某個(gè)生產(chǎn)項(xiàng)目如果任選3條生產(chǎn)線一起加工,最快需要6天整,最慢需要12天整;5條生產(chǎn)線一起加工,則需要5天整。問如果所有生產(chǎn)線的產(chǎn)能都擴(kuò)大一倍,任選2條生產(chǎn)線一起加工最多需要多少天完成?
A.11B.15
C.13D.30
【答案】B。
【華圖解析】本題考查工程問題,屬于給定時(shí)間型。題目給出了3條不同生產(chǎn)線和5條生產(chǎn)線一起加工所需的時(shí)間,所以賦值工作總量為60(5和12的最小公倍數(shù))。則總共五條的效率為60÷5=12,最快的三條生產(chǎn)線效率和為60÷6=10,因此可以得到最慢的兩條生產(chǎn)線的效率和為12-10=2。要想使加工時(shí)間最多,則任選的2條生產(chǎn)線應(yīng)該是最慢的,此時(shí)生產(chǎn)效率為2×2=4,所以所需時(shí)間為60÷4=15。因此,選擇B選項(xiàng)。
根據(jù)上面兩道真題不難發(fā)現(xiàn)掌握這個(gè)方法,碰到此類題目,做起來自然會得心應(yīng)手。工程問題是大家可以得分的一個(gè)題型,希望同學(xué)們能在這類題目上多花些時(shí)間跟精力,爭取考試能拿到分。
相關(guān)內(nèi)容推薦:
貼心考公客服
貼心專屬客服
報(bào)名條件?
崗位選擇?
筆試科目?
面試方式?
......